本文最后更新于 2023-12-09,文章内容可能已经过时。

MySql

1.系统架构:

image-20231128134713972

MySQL 的架构共分为两层:Server 层和存储引擎层

  • Server 层负责建立连接、分析和执行 SQL。MySQL 大多数的核心功能模块都在这实现,主要包括连接器,查询缓存、解析器、预处理器、优化器、执行器等。另外,所有的内置函数(如日期、时间、数学和加密函数等)和所有跨存储引擎的功能(如存储过程、触发器、视图等。)都在 Server 层实现。

  • 存储引擎层负责数据的存储和提取。支持 InnoDB、MyISAM、Memory 等多个存储引擎,不同的存储引擎共用一个 Server 层。现在最常用的存储引擎是 InnoDB,从 MySQL 5.5 版本开始, InnoDB 成为了 MySQL 的默认存储引擎。我们常说的索引数据结构,就是由存储引擎层实现的,不同的存储引擎支持的索引类型也不相同,比如 InnoDB 支持索引类型是 B+树 ,且是默认使用,也就是说在数据表中创建的主键索引和二级索引默认使用的是 B+ 树索引。

2. SQL语言执行过程:

2.1 连接器:

第一步肯定是要先连接 MySQL 服务,然后才能执行 SQL 语句,普遍我们都是使用下面这条命令进行连接:

# -h 指定 MySQL 服务得 IP 地址,如果是连接本地的 MySQL服务,可以不用这个参数;
# -u 指定用户名,管理员角色名为 root;
# -p 指定密码,如果命令行中不填写密码(为了密码安全,建议不要在命令行写密码),就需要在交互对话里面输入密码
mysql -h$ip -u$user -p

连接的过程需要先经过 TCP 三次握手,因为 MySQL 是基于 TCP 协议进行传输的.

如果 MySQL 服务正常运行,完成 TCP 连接的建立后,连接器就要开始验证你的用户名和密码,如果用户名或密码不对,就收到一个"Access denied for user"的错误,然后客户端程序结束执行。

如果用户密码都没有问题,连接器就会获取该用户的权限,然后保存起来,后续该用户在此连接里的任何操作,都会基于连接开始时读到的权限进行权限逻辑的判断。

MySQL 的连接也跟 HTTP 一样,有短连接和长连接的概念,它们的区别如下:

// 短连接
连接 mysql 服务(TCP 三次握手)
执行sql
断开 mysql 服务(TCP 四次挥手)
​
// 长连接
连接 mysql 服务(TCP 三次握手)
执行sql
执行sql
执行sql
....
断开 mysql 服务(TCP 四次挥手)

2.2 查询缓存:

连接器得工作完成后,客户端就可以向 MySQL 服务发送 SQL 语句了,MySQL 服务收到 SQL 语句后,就会解析出 SQL 语句的第一个字段,看看是什么类型的语句。

如果 SQL 是查询语句(select 语句),MySQL 就会先去查询缓存( Query Cache )里查找缓存数据,看看之前有没有执行过这一条命令,这个查询缓存是以 key-value 形式保存在内存中的,key 为 SQL 查询语句,value 为 SQL 语句查询的结果。

如果查询的语句命中查询缓存,那么就会直接返回 value 给客户端。如果查询的语句没有命中查询缓存中,那么就要往下继续执行,等执行完后,查询的结果就会被存入查询缓存中。

对于更新比较频繁的表,查询缓存的命中率很低的,所以,MySQL 8.0 版本直接将查询缓存删掉了,也就是说 MySQL 8.0 开始,执行一条 SQL 查询语句,不会再走到查询缓存这个阶段了。

对于 MySQL 8.0 之前的版本,如果想关闭查询缓存,我们可以通过将参数 query_cache_type 设置成 DEMAND。

2.3 解析SQL:

在正式执行 SQL 查询语句之前, MySQL 会先对 SQL 语句做解析,这个工作交由「解析器」来完成。

2.3.1 词法分析:

MySQL 会根据你输入的字符串识别出关键字出来,例如,SQL语句 select username from userinfo,在分析之后,会得到4个Token,其中有2个Keyword,分别为select和from:

image-20231128140147472

2.3.2 语法分析:

根据词法分析的结果,语法解析器会根据语法规则,判断你输入的这个 SQL 语句是否满足 MySQL 语法,如果没问题就会构建出 SQL 语法树,这样方便后面模块获取 SQL 类型、表名、字段名、 where 条件等等。

image-20231128140215850

如果我们输入的 SQL 语句语法不对,就会在解析器这个阶段报错。比如,我下面这条查询语句,把 from 写成了 form,这时 MySQL 解析器就会给报错。

但是注意,表不存在或者字段不存在,并不是在解析器里做的,《MySQL 45 讲》说是在解析器做的,但是经过我和朋友看 MySQL 源码(5.7和8.0)得出结论是解析器只负责检查语法和构建语法树,但是不会去查表或者字段存不存在。

2.4 执行阶段:

每条SELECT 查询语句流程主要可以分为下面这三个阶段:

  • prepare 阶段,也就是预处理阶段;

  • optimize 阶段,也就是优化阶段;

  • execute 阶段,也就是执行阶段;

2.4.1 prepare:

预处理阶段主要做两个工作:

  • 检查 SQL 查询语句中的表或者字段是否存在;

  • select * 中的 * 符号,扩展为表上的所有列;

image-20231128140351334

上面的中间部分是 MySQL 报错表不存在时的函数调用栈,可以看到表不存在的错误是在get_table_share() 函数里报错的,而这个函数是在 prepare 阶段调用的。

2.4.2 optimize:

经过预处理阶段后,还需要为 SQL 查询语句先制定一个执行计划,这个工作交由「优化器」来完成的。

优化器主要负责将 SQL 查询语句的执行方案确定下来,比如在表里面有多个索引的时候,优化器会基于查询成本的考虑,来决定选择使用哪个索引。

2.4.3 execute:

经历完优化器后,就确定了执行方案,接下来 MySQL 就真正开始执行语句了,这个工作是由「执行器」完成的。

在执行的过程中,执行器就会和存储引擎交互了,交互是以记录为单位的。

以下面这个查询语句为例,看看执行器是怎么工作的。

select * from product where id = 1;

这条查询语句的查询条件用到了主键索引,而且是等值查询,同时主键 id 是唯一,不会有 id 相同的记录,所以优化器决定选用访问类型为 const 进行查询,也就是使用主键索引查询一条记录,那么执行器与存储引擎的执行流程是这样的:

  • 执行器第一次查询,会调用 read_first_record 函数指针指向的函数,因为优化器选择的访问类型为 const,这个函数指针被指向为 InnoDB 引擎索引查询的接口,把条件 id = 1 交给存储引擎,让存储引擎定位符合条件的第一条记录

  • 存储引擎通过主键索引的 B+ 树结构定位到 id = 1的第一条记录,如果记录是不存在的,就会向执行器上报记录找不到的错误,然后查询结束。如果记录是存在的,就会将记录返回给执行器;

  • 执行器从存储引擎读到记录后,接着判断记录是否符合查询条件,如果符合则发送给客户端,如果不符合则跳过该记录。

  • 执行器查询的过程是一个 while 循环,所以还会再查一次,但是这次因为不是第一次查询了,所以会调用 read_record 函数指针指向的函数,因为优化器选择的访问类型为 const,这个函数指针被指向为一个永远返回 - 1 的函数,所以当调用该函数的时候,执行器就退出循环,也就是结束查询了。

2.4.3.1 索引下推:

索引下推能够减少二级索引在查询时的回表操作,提高查询的效率,因为它将 Server 层部分负责的事情,交给存储引擎层去处理了。

现在有下面这条查询语句:

select * from t_user  where age > 20 and reward = 100000;

联合索引当遇到范围查询 (>、<) 就会停止匹配,也就是 age 字段能用到联合索引,但是 reward 字段则无法利用到索引

那么,不使用索引下推(MySQL 5.6 之前的版本)时,执行器与存储引擎的执行流程是这样的:

  • Server 层首先调用存储引擎的接口定位到满足查询条件的第一条二级索引记录,也就是定位到 age > 20 的第一条记录;

  • 存储引擎根据二级索引的 B+ 树快速定位到这条记录后,获取主键值,然后进行回表操作,将完整的记录返回给 Server 层;

  • Server 层在判断该记录的 reward 是否等于 100000,如果成立则将其发送给客户端;否则跳过该记录;

  • 接着,继续向存储引擎索要下一条记录,存储引擎在二级索引定位到记录后,获取主键值,然后回表操作,将完整的记录返回给 Server 层;

  • 如此往复,直到存储引擎把表中的所有记录读完。

可以看到,没有索引下推的时候,每查询到一条二级索引记录,都要进行回表操作,然后将记录返回给 Server,接着 Server 再判断该记录的 reward 是否等于 100000。

而使用索引下推后,判断记录的 reward 是否等于 100000 的工作交给了存储引擎层,过程如下 :

  • Server 层首先调用存储引擎的接口定位到满足查询条件的第一条二级索引记录,也就是定位到 age > 20 的第一条记录;

  • 存储引擎定位到二级索引后,先不执行回表操作,而是先判断一下该索引中包含的列(reward列)的条件(reward 是否等于 100000)是否成立。如果条件不成立,则直接跳过该二级索引。如果成立,则执行回表操作,将完成记录返回给 Server 层。

  • Server 层在判断其他的查询条件(本次查询没有其他条件)是否成立,如果成立则将其发送给客户端;否则跳过该记录,然后向存储引擎索要下一条记录。

  • 如此往复,直到存储引擎把表中的所有记录读完。

可以看到,使用了索引下推后,虽然 reward 列无法使用到联合索引,但是因为它包含在联合索引(age,reward)里,所以直接在存储引擎过滤出满足 reward = 100000 的记录后,才去执行回表操作获取整个记录。相比于没有使用索引下推,节省了很多回表操作。

3.MySQL数据存储:

3.1 存储文件:

我们每创建一个 database(数据库) 都会在 /var/lib/mysql/ 目录里面创建一个以 database 为名的目录,然后保存表结构和表数据的文件都会存放在这个目录里。

进入到数据库之后,会看到三个文件:

[root@xiaolin ~]#ls /var/lib/mysql/my_test
db.opt  
t_order.frm  
t_order.ibd

可以看到,共有三个文件,这三个文件分别代表着:

  • db.opt,用来存储当前数据库的默认字符集和字符校验规则。

  • t_order.frm ,t_order 的表结构会保存在这个文件。在 MySQL 中建立一张表都会生成一个.frm 文件,该文件是用来保存每个表的元数据信息的,主要包含表结构定义。

  • t_order.ibd,t_order 的表数据会保存在这个文件。表数据既可以存在共享表空间文件(文件名:ibdata1)里,也可以存放在独占表空间文件(文件名:表名字.ibd)。这个行为是由参数 innodb_file_per_table 控制的,若设置了参数 innodb_file_per_table 为 1,则会将存储的数据、索引等信息单独存储在一个独占表空间,从 MySQL 5.6.6 版本开始,它的默认值就是 1 了,因此从这个版本之后, MySQL 中每一张表的数据都存放在一个独立的 .ibd 文件。

3.2 文件结构:

表空间由段(segment)、区(extent)、页(page)、行(row)组成,InnoDB存储引擎的逻辑存储结构大致如下图:

image-20231128141027674

3.2.1、行(row)

数据库表中的记录都是按行(row)进行存放的,每行记录根据不同的行格式,有不同的存储结构。

后面我们详细介绍 InnoDB 存储引擎的行格式,也是本文重点介绍的内容。

3.2.2、页(page)

记录是按照行来存储的,但是数据库的读取并不以「行」为单位,否则一次读取(也就是一次 I/O 操作)只能处理一行数据,效率会非常低。

因此,InnoDB 的数据是按「页」为单位来读写的,也就是说,当需要读一条记录的时候,并不是将这个行记录从磁盘读出来,而是以页为单位,将其整体读入内存。

默认每个页的大小为 16KB,也就是最多能保证 16KB 的连续存储空间。

页是 InnoDB 存储引擎磁盘管理的最小单元,意味着数据库每次读写都是以 16KB 为单位的,一次最少从磁盘中读取 16K 的内容到内存中,一次最少把内存中的 16K 内容刷新到磁盘中。

页的类型有很多,常见的有数据页、undo 日志页、溢出页等等。数据表中的行记录是用「数据页」来管理的,数据页的结构这里我就不讲细说了.

总之知道表中的记录存储在「数据页」里面就行。

3.2.3、区(extent)

我们知道 InnoDB 存储引擎是用 B+ 树来组织数据的。

B+ 树中每一层都是通过双向链表连接起来的,如果是以页为单位来分配存储空间,那么链表中相邻的两个页之间的物理位置并不是连续的,可能离得非常远,那么磁盘查询时就会有大量的随机I/O,随机 I/O 是非常慢的。

解决这个问题也很简单,就是让链表中相邻的页的物理位置也相邻,这样就可以使用顺序 I/O 了,那么在范围查询(扫描叶子节点)的时候性能就会很高。

那具体怎么解决呢?

在表中数据量大的时候,为某个索引分配空间的时候就不再按照页为单位分配了,而是按照区(extent)为单位分配。每个区的大小为 1MB,对于 16KB 的页来说,连续的 64 个页会被划为一个区,这样就使得链表中相邻的页的物理位置也相邻,就能使用顺序 I/O 了

3.2.4、段(segment)

表空间是由各个段(segment)组成的,段是由多个区(extent)组成的。段一般分为数据段、索引段和回滚段等。

  • 索引段:存放 B + 树的非叶子节点的区的集合;

  • 数据段:存放 B + 树的叶子节点的区的集合;

  • 回滚段:存放的是回滚数据的区的集合.

3.3 行格式:

行格式(row_format),就是一条记录的存储结构。

InnoDB 提供了 4 种行格式,分别是 Redundant、Compact、Dynamic和 Compressed 行格式。

  • Redundant 是很古老的行格式了, MySQL 5.0 版本之前用的行格式,现在基本没人用了。

  • 由于 Redundant 不是一种紧凑的行格式,所以 MySQL 5.0 之后引入了 Compact 行记录存储方式,Compact 是一种紧凑的行格式,设计的初衷就是为了让一个数据页中可以存放更多的行记录,从 MySQL 5.1 版本之后,行格式默认设置成 Compact。

  • Dynamic 和 Compressed 两个都是紧凑的行格式,它们的行格式都和 Compact 差不多,因为都是基于 Compact 改进一点东西。从 MySQL5.7 版本之后,默认使用 Dynamic 行格式。

3.3.1 Compact:

image-20231128141306774

一条完整的记录分为「记录的额外信息」和「记录的真实数据」两个部分。

3.3.1.1 额外信息:

3.3.1.1.1 变长字段长度列表:

众所周知,char 是定长的,varchar 是变长的,变长字段实际存储的数据的长度(大小)不固定的。

在存储数据的时候,也要把数据占用的大小存起来,存到「变长字段长度列表」里面,读取数据的时候才能根据这个「变长字段长度列表」去读取对应长度的数据。其他 TEXT、BLOB 等变长字段也是这么实现的。

NULL 是不会存放在行格式中记录的真实数据部分里的,所以「变长字段长度列表」里不需要保存值为 NULL 的变长字段的长度。

「变长字段长度列表」中的信息之所以要逆序存放,是因为这样可以使得位置靠前的记录的真实数据和数据对应的字段长度信息可以同时在一个 CPU Cache Line 中,这样就可以提高 CPU Cache 的命中率

当数据表没有变长字段的时候,比如全部都是 int 类型的字段,这时候表里的行格式就不会有「变长字段长度列表」了

3.3.1.1.2 NULL值列表:

表中的某些列可能会存储 NULL 值,如果把这些 NULL 值都放到记录的真实数据中会比较浪费空间,所以 Compact 行格式把这些值为 NULL 的列存储到 NULL值列表中。

如果存在允许 NULL 值的列,则每个列对应一个二进制位(bit),二进制位按照列的顺序逆序排列。

  • 二进制位的值为1时,代表该列的值为NULL。

  • 二进制位的值为0时,代表该列的值不为NULL。

当数据表的字段都定义成 NOT NULL 的时候,这时候表里的行格式就不会有 NULL 值列表了

3.3.1.1.3 记录头信息:
  • delete_mask :标识此条数据是否被删除。从这里可以知道,我们执行 detele 删除记录的时候,并不会真正的删除记录,只是将这个记录的 delete_mask 标记为 1。

  • next_record:下一条记录的位置。从这里可以知道,记录与记录之间是通过链表组织的。在前面我也提到了,指向的是下一条记录的「记录头信息」和「真实数据」之间的位置,这样的好处是向左读就是记录头信息,向右读就是真实数据,比较方便。

  • record_type:表示当前记录的类型,0表示普通记录,1表示B+树非叶子节点记录,2表示最小记录,3表示最大记录

3.3.1.2 真实数据:

3.3.1.2.1 隐藏字段:

记录真实数据部分除了我们定义的字段,还有三个隐藏字段,分别为:row_id、trx_id、roll_pointer.

  • row_id

如果我们建表的时候指定了主键或者唯一约束列,那么就没有 row_id 隐藏字段了。如果既没有指定主键,又没有唯一约束,那么 InnoDB 就会为记录添加 row_id 隐藏字段。row_id不是必需的,占用 6 个字节。

  • trx_id

事务id,表示这个数据是由哪个事务生成的。 trx_id是必需的,占用 6 个字节。

  • roll_pointer

这条记录上一个版本的指针。roll_pointer 是必需的,占用 7 个字节。

3.3.2 varchar(n) 中 n 最大取值:

MySQL 规定除了 TEXT、BLOBs 这种大对象类型之外,其他所有的列(不包括隐藏列和记录头信息)占用的字节长度加起来不能超过 65535 个字节

也就是说,一行记录除了 TEXT、BLOBs 类型的列,限制最大为 65535 字节,注意是一行的总长度,不是一列。

如果有多个字段的话,要保证所有字段的长度 + 变长字段字节数列表所占用的字节数 + NULL值列表所占用的字节数 <= 65535

3.3.3 行溢出:

MySQL 中磁盘和内存交互的基本单位是页,一个页的大小一般是 16KB,也就是 16384字节,而一个 varchar(n) 类型的列最多可以存储 65532字节,一些大对象如 TEXT、BLOB 可能存储更多的数据,这时一个页可能就存不了一条记录。这个时候就会发生行溢出,多的数据就会存到另外的「溢出页」中

如果一个数据页存不了一条记录,InnoDB 存储引擎会自动将溢出的数据存放到「溢出页」中。在一般情况下,InnoDB 的数据都是存放在 「数据页」中。但是当发生行溢出时,溢出的数据会存放到「溢出页」中。

当发生行溢出时,在记录的真实数据处只会保存该列的一部分数据,而把剩余的数据放在「溢出页」中,然后真实数据处用 20 字节存储指向溢出页的地址,从而可以找到剩余数据所在的页。

4.索引:

4.1 引入:

索引的定义就是帮助存储引擎快速获取数据的一种数据结构,形象的说就是索引是数据的目录

所谓的存储引擎,说白了就是如何存储数据、如何为存储的数据建立索引和如何更新、查询数据等技术的实现方法。MySQL 存储引擎有 MyISAM 、InnoDB、Memory,其中 InnoDB 是在 MySQL 5.5 之后成为默认的存储引擎。

4.2 分类:

  • 按「数据结构」分类:B+tree索引、Hash索引、Full-text索引

  • 按「物理存储」分类:聚簇索引(主键索引)、二级索引(辅助索引)

  • 按「字段特性」分类:主键索引、唯一索引、普通索引、前缀索引

  • 按「字段个数」分类:单列索引、联合索引

4.2.1 数据结构:

4.2.1.1 B+树索引:

B+Tree 是一种多叉树,叶子节点才存放数据,非叶子节点只存放索引,而且每个节点里的数据是按主键顺序存放的。每一层父节点的索引值都会出现在下层子节点的索引值中,因此在叶子节点中,包括了所有的索引值信息,并且每一个叶子节点都有两个指针,分别指向下一个叶子节点和上一个叶子节点,形成一个双向链表。

image-20231128142234964

通过主键查询商品数据的过程

比如,我们执行了下面这条查询语句:

select * from product where id= 5;

这条语句使用了主键索引查询 id 号为 5 的商品。查询过程是这样的,B+Tree 会自顶向下逐层进行查找:

  • 将 5 与根节点的索引数据 (1,10,20) 比较,5 在 1 和 10 之间,所以根据 B+Tree的搜索逻辑,找到第二层的索引数据 (1,4,7);

  • 在第二层的索引数据 (1,4,7)中进行查找,因为 5 在 4 和 7 之间,所以找到第三层的索引数据(4,5,6);

  • 在叶子节点的索引数据(4,5,6)中进行查找,然后我们找到了索引值为 5 的行数据。

数据库的索引和数据都是存储在硬盘的,我们可以把读取一个节点当作一次磁盘 I/O 操作。那么上面的整个查询过程一共经历了 3 个节点,也就是进行了 3 次 I/O 操作。

B+Tree 存储千万级的数据只需要 3-4 层高度就可以满足,这意味着从千万级的表查询目标数据最多需要 3-4 次磁盘 I/O,所以B+Tree 相比于 B 树和二叉树来说,最大的优势在于查询效率很高,因为即使在数据量很大的情况,查询一个数据的磁盘 I/O 依然维持在 3-4次。

4.2.1.2 二级索引:

主键索引的 B+Tree 和二级索引的 B+Tree 区别如下:

  • 主键索引的 B+Tree 的叶子节点存放的是实际数据,所有完整的用户记录都存放在主键索引的 B+Tree 的叶子节点里;

  • 二级索引的 B+Tree 的叶子节点存放的是主键值,而不是实际数据。

如果我用 product_no 二级索引查询商品,如下查询语句:

select * from product where product_no = '0002';

会先检二级索引中的 B+Tree 的索引值(商品编码,product_no),找到对应的叶子节点,然后获取主键值,然后再通过主键索引中的 B+Tree 树查询到对应的叶子节点,然后获取整行数据。这个过程叫「回表」,也就是说要查两个 B+Tree 才能查到数据

4.2.1.3 为什么使用B+树:

1、B+Tree vs B Tree

B+Tree 只在叶子节点存储数据,而 B 树 的非叶子节点也要存储数据,所以 B+Tree 的单个节点的数据量更小,在相同的磁盘 I/O 次数下,就能查询更多的节点。

另外,B+Tree 叶子节点采用的是双链表连接,适合 MySQL 中常见的基于范围的顺序查找,而 B 树无法做到这一点。

2、B+Tree vs 二叉树

对于有 N 个叶子节点的 B+Tree,其搜索复杂度为O(logdN),其中 d 表示节点允许的最大子节点个数为 d 个。

在实际的应用当中, d 值是大于100的,这样就保证了,即使数据达到千万级别时,B+Tree 的高度依然维持在 3~4 层左右,也就是说一次数据查询操作只需要做 3~4 次的磁盘 I/O 操作就能查询到目标数据。

而二叉树的每个父节点的儿子节点个数只能是 2 个,意味着其搜索复杂度为 O(logN),这已经比 B+Tree 高出不少,因此二叉树检索到目标数据所经历的磁盘 I/O 次数要更多。

3、B+Tree vs Hash

Hash 在做等值查询的时候效率贼快,搜索复杂度为 O(1)。

但是 Hash 表不适合做范围查询,它更适合做等值的查询,这也是 B+Tree 索引要比 Hash 表索引有着更广泛的适用场景的原因。

4.2.1.4 字段特性分类:

从字段特性的角度来看,索引分为主键索引、唯一索引、普通索引、前缀索引。

主键索引

主键索引就是建立在主键字段上的索引,通常在创建表的时候一起创建,一张表最多只有一个主键索引,索引列的值不允许有空值。

在创建表时,创建主键索引的方式如下:

CREATE TABLE table_name  (
  ....
  PRIMARY KEY (index_column_1) USING BTREE
);

唯一索引

唯一索引建立在 UNIQUE 字段上的索引,一张表可以有多个唯一索引,索引列的值必须唯一,但是允许有空值。

在创建表时,创建唯一索引的方式如下:

CREATE TABLE table_name  (
  ....
  UNIQUE KEY(index_column_1,index_column_2,...) 
);

建表后,如果要创建唯一索引,可以使用这面这条命令:

CREATE UNIQUE INDEX index_name
ON table_name(index_column_1,index_column_2,...); 

普通索引

普通索引就是建立在普通字段上的索引,既不要求字段为主键,也不要求字段为 UNIQUE。

在创建表时,创建普通索引的方式如下:

CREATE TABLE table_name  (
  ....
  INDEX(index_column_1,index_column_2,...) 
);

建表后,如果要创建普通索引,可以使用这面这条命令:

CREATE INDEX index_name
ON table_name(index_column_1,index_column_2,...); 

前缀索引

前缀索引是指对字符类型字段的前几个字符建立的索引,而不是在整个字段上建立的索引,前缀索引可以建立在字段类型为 char、 varchar、binary、varbinary 的列上。

使用前缀索引的目的是为了减少索引占用的存储空间,提升查询效率。

在创建表时,创建前缀索引的方式如下:

CREATE TABLE table_name(
    column_list,
    INDEX(column_name(length))
); 

建表后,如果要创建前缀索引,可以使用这面这条命令:

CREATE INDEX index_name
ON table_name(column_name(length)); 

4.2.1.5 字段个数分类:

联合索引

通过将多个字段组合成一个索引,该索引就被称为联合索引。

image-20231128163743536

可以看到,联合索引的非叶子节点用两个字段的值作为 B+Tree 的 key 值。当在联合索引查询数据时,先按 product_no 字段比较,在 product_no 相同的情况下再按 name 字段比较。

也就是说,联合索引查询的 B+Tree 是先按 product_no 进行排序,然后再 product_no 相同的情况再按 name 字段排序。

因此,使用联合索引时,存在最左匹配原则,也就是按照最左优先的方式进行索引的匹配。

4.2.2 使用时机:

索引最大的好处是提高查询速度,但是索引也是有缺点的,比如:

  • 需要占用物理空间,数量越大,占用空间越大;

  • 创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增大;

  • 会降低表的增删改的效率,因为每次增删改索引,B+ 树为了维护索引有序性,都需要进行动态维护。

所以,索引不是万能钥匙,它也是根据场景来使用的。

4.2.2.1 什么时候适用索引?

  • 字段有唯一性限制的,比如商品编码;

  • 经常用于 WHERE 查询条件的字段,这样能够提高整个表的查询速度,如果查询条件不是一个字段,可以建立联合索引。

  • 经常用于 GROUP BYORDER BY 的字段,这样在查询的时候就不需要再去做一次排序了,因为我们都已经知道了建立索引之后在 B+Tree 中的记录都是排序好的。

4.2.2.2 什么时候不需要创建索引?

  • WHERE 条件,GROUP BYORDER BY 里用不到的字段,索引的价值是快速定位,如果起不到定位的字段通常是不需要创建索引的,因为索引是会占用物理空间的。

  • 字段中存在大量重复数据,不需要创建索引,比如性别字段,只有男女,如果数据库表中,男女的记录分布均匀,那么无论搜索哪个值都可能得到一半的数据。在这些情况下,还不如不要索引,因为 MySQL 还有一个查询优化器,查询优化器发现某个值出现在表的数据行中的百分比很高的时候,它一般会忽略索引,进行全表扫描。

  • 表数据太少的时候,不需要创建索引;

  • 经常更新的字段不用创建索引,比如不要对电商项目的用户余额建立索引,因为索引字段频繁修改,由于要维护 B+Tree的有序性,那么就需要频繁的重建索引,这个过程是会影响数据库性能的.

4.3 索引优化:

4.3.1 主键自增:

我们在建表的时候,都会默认将主键索引设置为自增的,具体为什么要这样做呢?又什么好处?

InnoDB 创建主键索引默认为聚簇索引,数据被存放在了 B+Tree 的叶子节点上。也就是说,同一个叶子节点内的各个数据是按主键顺序存放的,因此,每当有一条新的数据插入时,数据库会根据主键将其插入到对应的叶子节点中。

如果我们使用自增主键,那么每次插入的新数据就会按顺序添加到当前索引节点的位置,不需要移动已有的数据,当页面写满,就会自动开辟一个新页面。因为每次插入一条新记录,都是追加操作,不需要重新移动数据,因此这种插入数据的方法效率非常高。

如果我们使用非自增主键,由于每次插入主键的索引值都是随机的,因此每次插入新的数据时,就可能会插入到现有数据页中间的某个位置,这将不得不移动其它数据来满足新数据的插入,甚至需要从一个页面复制数据到另外一个页面,我们通常将这种情况称为页分裂页分裂还有可能会造成大量的内存碎片,导致索引结构不紧凑,从而影响查询效率

4.3.2 索引not null:

为了更好的利用索引,索引列要设置为 NOT NULL 约束。有两个原因:

  • 第一原因:索引列存在 NULL 就会导致优化器在做索引选择的时候更加复杂,更加难以优化,因为可为 NULL 的列会使索引、索引统计和值比较都更复杂,比如进行索引统计时,count 会省略值为NULL 的行。

  • 第二个原因:NULL 值是一个没意义的值,但是它会占用物理空间,所以会带来的存储空间的问题,因为 InnoDB 存储记录的时候,如果表中存在允许为 NULL 的字段,那么行格式中至少会用 1 字节空间存储 NULL 值列表,如下图的紫色部分:

4.3.3 覆盖索引优化:

覆盖索引是指 SQL 中 query 的所有字段,在索引 B+Tree 的叶子节点上都能找得到的那些索引,从二级索引中查询得到记录,而不需要通过聚簇索引查询获得,可以避免回表的操作。

假设我们只需要查询商品的名称、价格,有什么方式可以避免回表呢?

我们可以建立一个联合索引,即「商品ID、名称、价格」作为一个联合索引。如果索引中存在这些数据,查询将不会再次检索主键索引,从而避免回表。

所以,使用覆盖索引的好处就是,不需要查询出包含整行记录的所有信息,也就减少了大量的 I/O 操作。

4.4 索引失效:

这里简单说一下,发生索引失效的情况:

  • 当我们使用左或者左右模糊匹配的时候,也就是 like %xx 或者 like %xx%这两种方式都会造成索引失效;

  • 当我们在查询条件中对索引列做了计算、函数、类型转换操作,这些情况下都会造成索引失效;

  • 联合索引要能正确使用需要遵循最左匹配原则,也就是按照最左优先的方式进行索引的匹配,否则就会导致索引失效。

  • 在 WHERE 子句中,如果在 OR 前的条件列是索引列,而在 OR 后的条件列不是索引列,那么索引会失效。

image-20231128164335952

5.事务:

5.1 事务特性:

事务是由 MySQL 的引擎来实现的,我们常见的 InnoDB 引擎它是支持事务的。

不过并不是所有的引擎都能支持事务,比如 MySQL 原生的 MyISAM 引擎就不支持事务,也正是这样,所以大多数 MySQL 的引擎都是用 InnoDB。

事务看起来感觉简单,但是要实现事务必须要遵守 4 个特性,分别如下:

  • 原子性(Atomicity):一个事务中的所有操作,要么全部完成,要么全部不完成,不会结束在中间某个环节,而且事务在执行过程中发生错误,会被回滚到事务开始前的状态,就像这个事务从来没有执行过一样,就好比买一件商品,购买成功时,则给商家付了钱,商品到手;购买失败时,则商品在商家手中,消费者的钱也没花出去。

  • 一致性(Consistency):是指事务操作前和操作后,数据满足完整性约束,数据库保持一致性状态。比如,用户 A 和用户 B 在银行分别有 800 元和 600 元,总共 1400 元,用户 A 给用户 B 转账 200 元,分为两个步骤,从 A 的账户扣除 200 元和对 B 的账户增加 200 元。一致性就是要求上述步骤操作后,最后的结果是用户 A 还有 600 元,用户 B 有 800 元,总共 1400 元,而不会出现用户 A 扣除了 200 元,但用户 B 未增加的情况(该情况,用户 A 和 B 均为 600 元,总共 1200 元)。

  • 隔离性(Isolation):数据库允许多个并发事务同时对其数据进行读写和修改的能力,隔离性可以防止多个事务并发执行时由于交叉执行而导致数据的不一致,因为多个事务同时使用相同的数据时,不会相互干扰,每个事务都有一个完整的数据空间,对其他并发事务是隔离的。也就是说,消费者购买商品这个事务,是不影响其他消费者购买的。

  • 持久性(Durability):事务处理结束后,对数据的修改就是永久的,即便系统故障也不会丢失。

InnoDB 引擎通过什么技术来保证事务的这四个特性的呢?

  • 持久性是通过 redo log (重做日志)来保证的;

  • 原子性是通过 undo log(回滚日志) 来保证的;

  • 隔离性是通过 MVCC(多版本并发控制) 或锁机制来保证的;

  • 一致性则是通过持久性+原子性+隔离性来保证;

5.2 并行事务问题:

MySQL 服务端是允许多个客户端连接的,这意味着 MySQL 会出现同时处理多个事务的情况。

那么在同时处理多个事务的时候,就可能出现脏读(dirty read)、不可重复读(non-repeatable read)、幻读(phantom read)的问题

5.2.1 脏读:

如果一个事务「读到」了另一个「未提交事务修改过的数据」,就意味着发生了「脏读」现象。

image-20231128164834235

因为事务 A 是还没提交事务的,也就是它随时可能发生回滚操作,如果在上面这种情况事务 A 发生了回滚,那么事务 B 刚才得到的数据就是过期的数据,这种现象就被称为脏读。

5.2.2 不可重复读:

在一个事务内多次读取同一个数据,如果出现前后两次读到的数据不一样的情况,就意味着发生了「不可重复读」现象。

image-20231128164927726

5.2.3 幻读:

在一个事务内多次查询某个符合查询条件的「记录数量」,如果出现前后两次查询到的记录数量不一样的情况,就意味着发生了「幻读」现象。

假设有 A 和 B 这两个事务同时在处理,事务 A 先开始从数据库查询账户余额大于 100 万的记录,发现共有 5 条,然后事务 B 也按相同的搜索条件也是查询出了 5 条记录。

image-20231128165005337

接下来,事务 A 插入了一条余额超过 100 万的账号,并提交了事务,此时数据库超过 100 万余额的账号个数就变为 6。

然后事务 B 再次查询账户余额大于 100 万的记录,此时查询到的记录数量有 6 条,发现和前一次读到的记录数量不一样了,就感觉发生了幻觉一样,这种现象就被称为幻读。

这三个现象的严重性排序如下:

image-20231128165048973

5.3 事务的隔离级别:

SQL 标准提出了四种隔离级别来规避这些现象,隔离级别越高,性能效率就越低,这四个隔离级别如下:

  • 读未提交(*read uncommitted*),指一个事务还没提交时,它做的变更就能被其他事务看到;

  • 读已提交(*read committed*),指一个事务提交之后,它做的变更才能被其他事务看到;

  • 可重复读(*repeatable read*),指一个事务执行过程中看到的数据,一直跟这个事务启动时看到的数据是一致的,MySQL InnoDB 引擎的默认隔离级别

  • 串行化(*serializable* );会对记录加上读写锁,在多个事务对这条记录进行读写操作时,如果发生了读写冲突的时候,后访问的事务必须等前一个事务执行完成,才能继续执行;

    按隔离水平高低排序如下:

image-20231128165127054

针对不同的隔离级别,并发事务时可能发生的现象也会不同。

image-20231128165158961

  • 在「读未提交」隔离级别下,可能发生脏读、不可重复读和幻读现象;

  • 在「读提交」隔离级别下,可能发生不可重复读和幻读现象,但是不可能发生脏读现象;

  • 在「可重复读」隔离级别下,可能发生幻读现象,但是不可能脏读和不可重复读现象;

  • 在「串行化」隔离级别下,脏读、不可重复读和幻读现象都不可能会发生。

所以,要解决脏读现象,就要升级到「读提交」以上的隔离级别;要解决不可重复读现象,就要升级到「可重复读」的隔离级别,要解决幻读现象不建议将隔离级别升级到「串行化」。

5.3.1 实现:

  • 对于「读未提交」隔离级别的事务来说,因为可以读到未提交事务修改的数据,所以直接读取最新的数据就好了;

  • 对于「串行化」隔离级别的事务来说,通过加读写锁的方式来避免并行访问;

  • 对于「读提交」和「可重复读」隔离级别的事务来说,它们是通过 Read View *来实现的,它们的区别在于创建 Read View 的时机不同,大家可以把 Read View 理解成一个数据快照,就像相机拍照那样,定格某一时刻的风景。*「读提交」隔离级别是在「每个语句执行前」都会重新生成一个 Read View,而「可重复读」隔离级别是「启动事务时」生成一个 Read View,然后整个事务期间都在用这个 Read View

可重复读隔离级别是启动事务时生成一个 Read View,然后整个事务期间都在用这个 Read View

读提交隔离级别是在每次读取数据时,都会生成一个新的 Read View

对于「读提交」和「可重复读」隔离级别的事务来说,它们是通过 Read View 来实现的,它们的区别在于创建 Read View 的时机不同:

  • 「读提交」隔离级别是在每个 select 都会生成一个新的 Read View,也意味着,事务期间的多次读取同一条数据,前后两次读的数据可能会出现不一致,因为可能这期间另外一个事务修改了该记录,并提交了事务。

  • 「可重复读」隔离级别是启动事务时生成一个 Read View,然后整个事务期间都在用这个 Read View,这样就保证了在事务期间读到的数据都是事务启动前的记录。

而对于幻读现象,不建议将隔离级别升级为串行化,因为这会导致数据库并发时性能很差。MySQL InnoDB 引擎的默认隔离级别虽然是「可重复读」,但是它很大程度上避免幻读现象(并不是完全解决了),解决的方案有两种:

  • 针对快照读(普通 select 语句),是通过 MVCC 方式解决了幻读,因为可重复读隔离级别下,事务执行过程中看到的数据,一直跟这个事务启动时看到的数据是一致的,即使中途有其他事务插入了一条数据,是查询不出来这条数据的,所以就很好了避免幻读问题。

  • 针对当前读(select ... for update 等语句),是通过 next-key lock(记录锁+间隙锁)方式解决了幻读,因为当执行 select ... for update 语句的时候,会加上 next-key lock,如果有其他事务在 next-key lock 锁范围内插入了一条记录,那么这个插入语句就会被阻塞,无法成功插入,所以就很好了避免幻读问题。

6.锁:

在 MySQL 里,根据加锁的范围,可以分为全局锁、表级锁和行锁三类。

6.1 全局锁:

要使用全局锁,则要执行这条命令:

flush tables with read lock

执行后,整个数据库就处于只读状态了,这时其他线程执行以下操作,都会被阻塞:

  • 对数据的增删改操作,比如 insert、delete、update等语句;

  • 对表结构的更改操作,比如 alter table、drop table 等语句。

如果要释放全局锁,则要执行这条命令:

unlock tables

当然,当会话断开了,全局锁会被自动释放。

全局锁主要应用于做全库逻辑备份,这样在备份数据库期间,不会因为数据或表结构的更新,而出现备份文件的数据与预期的不一样。

6.2 表级锁:

MySQL 里面表级别的锁有这几种:

  • 表锁;

  • 元数据锁(MDL);

  • 意向锁;

  • AUTO-INC 锁;

6.2.1 表锁:

如果我们想对学生表(t_student)加表锁,可以使用下面的命令:

//表级别的共享锁,也就是读锁;
lock tables t_student read;
​
//表级别的独占锁,也就是写锁;
lock tables t_stuent write;

需要注意的是,表锁除了会限制别的线程的读写外,也会限制本线程接下来的读写操作。

也就是说如果本线程对学生表加了「共享表锁」,那么本线程接下来如果要对学生表执行写操作的语句,是会被阻塞的,当然其他线程对学生表进行写操作时也会被阻塞,直到锁被释放。

要释放表锁,可以使用下面这条命令,会释放当前会话的所有表锁:

unlock tables

另外,当会话退出后,也会释放所有表锁。

6.2.2 元数据锁:

元数据锁(MDL).

我们不需要显示的使用 MDL,因为当我们对数据库表进行操作时,会自动给这个表加上 MDL:

  • 对一张表进行 CRUD 操作时,加的是 MDL 读锁

  • 对一张表做结构变更操作的时候,加的是 MDL 写锁

当有线程在执行 select 语句( 加 MDL 读锁)的期间,如果有其他线程要更改该表的结构( 申请 MDL 写锁),那么将会被阻塞,直到执行完 select 语句( 释放 MDL 读锁)。

反之,当有线程对表结构进行变更( 加 MDL 写锁)的期间,如果有其他线程执行了 CRUD 操作( 申请 MDL 读锁),那么就会被阻塞,直到表结构变更完成( 释放 MDL 写锁)。

MDL 是在事务提交后才会释放,这意味着事务执行期间,MDL 是一直持有的

6.2.3 意向锁:

接着,说说意向锁

  • 在使用 InnoDB 引擎的表里对某些记录加上「共享锁」之前,需要先在表级别加上一个「意向共享锁」;

  • 在使用 InnoDB 引擎的表里对某些纪录加上「独占锁」之前,需要先在表级别加上一个「意向独占锁」;

也就是,当执行插入、更新、删除操作,需要先对表加上「意向独占锁」,然后对该记录加独占锁。

而普通的 select 是不会加行级锁的,普通的 select 语句是利用 MVCC 实现一致性读,是无锁的。

不过,select 也是可以对记录加共享锁和独占锁的,具体方式如下:

//先在表上加上意向共享锁,然后对读取的记录加共享锁
select ... lock in share mode;
​
//先表上加上意向独占锁,然后对读取的记录加独占锁
select ... for update;

意向共享锁和意向独占锁是表级锁,不会和行级的共享锁和独占锁发生冲突,而且意向锁之间也不会发生冲突,只会和共享表锁(*lock tables ... read*)和独占表锁(*lock tables ... write*)发生冲突。

表锁和行锁是满足读读共享、读写互斥、写写互斥的。

如果没有「意向锁」,那么加「独占表锁」时,就需要遍历表里所有记录,查看是否有记录存在独占锁,这样效率会很慢。

那么有了「意向锁」,由于在对记录加独占锁前,先会加上表级别的意向独占锁,那么在加「独占表锁」时,直接查该表是否有意向独占锁,如果有就意味着表里已经有记录被加了独占锁,这样就不用去遍历表里的记录。

所以,意向锁的目的是为了快速判断表里是否有记录被加锁

6.2.4 AUTO-INC 锁:

表里的主键通常都会设置成自增的,这是通过对主键字段声明 AUTO_INCREMENT 属性实现的。

之后可以在插入数据时,可以不指定主键的值,数据库会自动给主键赋值递增的值,这主要是通过 AUTO-INC 锁实现的。

AUTO-INC 锁是特殊的表锁机制,锁不是再一个事务提交后才释放,而是再执行完插入语句后就会立即释放

在插入数据时,会加一个表级别的 AUTO-INC 锁,然后为被 AUTO_INCREMENT 修饰的字段赋值递增的值,等插入语句执行完成后,才会把 AUTO-INC 锁释放掉。

那么,一个事务在持有 AUTO-INC 锁的过程中,其他事务的如果要向该表插入语句都会被阻塞,从而保证插入数据时,被 AUTO_INCREMENT 修饰的字段的值是连续递增的。

但是, AUTO-INC 锁再对大量数据进行插入的时候,会影响插入性能,因为另一个事务中的插入会被阻塞。

因此, 在 MySQL 5.1.22 版本开始,InnoDB 存储引擎提供了一种轻量级的锁来实现自增。

一样也是在插入数据的时候,会为被 AUTO_INCREMENT 修饰的字段加上轻量级锁,然后给该字段赋值一个自增的值,就把这个轻量级锁释放了,而不需要等待整个插入语句执行完后才释放锁

6.2.5 行级锁:

InnoDB 引擎是支持行级锁的,而 MyISAM 引擎并不支持行级锁。

前面也提到,普通的 select 语句是不会对记录加锁的,因为它属于快照读。如果要在查询时对记录加行锁,可以使用下面这两个方式,这种查询会加锁的语句称为锁定读

//对读取的记录加共享锁
select ... lock in share mode;
​
//对读取的记录加独占锁
select ... for update;

上面这两条语句必须在一个事务中,因为当事务提交了,锁就会被释放.

行级锁的类型主要有三类:

  • Record Lock,记录锁,也就是仅仅把一条记录锁上;

  • Gap Lock,间隙锁,锁定一个范围,但是不包含记录本身;

  • Next-Key Lock:Record Lock + Gap Lock 的组合,锁定一个范围,并且锁定记录本身。

6.2.5.1 Record Lock:

Record Lock 称为记录锁,锁住的是一条记录。而且记录锁是有 S 锁和 X 锁之分的:

  • 当一个事务对一条记录加了 S 型记录锁后,其他事务也可以继续对该记录加 S 型记录锁(S 型与 S 锁兼容),但是不可以对该记录加 X 型记录锁(S 型与 X 锁不兼容);

  • 当一个事务对一条记录加了 X 型记录锁后,其他事务既不可以对该记录加 S 型记录锁(S 型与 X 锁不兼容),也不可以对该记录加 X 型记录锁(X 型与 X 锁不兼容)。

6.2.5.2 Gap Lock:

Gap Lock 称为间隙锁,只存在于可重复读隔离级别,目的是为了解决可重复读隔离级别下幻读的现象。

假设,表中有一个范围 id 为(3,5)间隙锁,那么其他事务就无法插入 id = 4 这条记录了,这样就有效的防止幻读现象的发生。

间隙锁虽然存在 X 型间隙锁和 S 型间隙锁,但是并没有什么区别,间隙锁之间是兼容的,即两个事务可以同时持有包含共同间隙范围的间隙锁,并不存在互斥关系,因为间隙锁的目的是防止插入幻读记录而提出的

6.2.5.3 Next-Key Lock:

Next-Key Lock 称为临键锁,是 Record Lock + Gap Lock 的组合,锁定一个范围,并且锁定记录本身。

假设,表中有一个范围 id 为(3,5] 的 next-key lock,那么其他事务即不能插入 id = 4 记录,也不能修改 id = 5 这条记录。

所以,next-key lock 即能保护该记录,又能阻止其他事务将新纪录插入到被保护记录前面的间隙中。

next-key lock 是包含间隙锁+记录锁的,如果一个事务获取了 X 型的 next-key lock,那么另外一个事务在获取相同范围的 X 型的 next-key lock 时,是会被阻塞的

6.2.5.4 插入意向锁:

一个事务在插入一条记录的时候,需要判断插入位置是否已被其他事务加了间隙锁(next-key lock 也包含间隙锁)。

如果有的话,插入操作就会发生阻塞,直到拥有间隙锁的那个事务提交为止(释放间隙锁的时刻),在此期间会生成一个插入意向锁,表明有事务想在某个区间插入新记录,但是现在处于等待状态。

插入意向锁名字虽然有意向锁,但是它并不是意向锁,它是一种特殊的间隙锁,属于行级别锁

6.3 加锁过程:

唯一索引等值查询:

  • 当查询的记录是「存在」的,在索引树上定位到这一条记录后,将该记录的索引中的 next-key lock 会退化成「记录锁」

  • 当查询的记录是「不存在」的,在索引树找到第一条大于该查询记录的记录后,将该记录的索引中的 next-key lock 会退化成「间隙锁」

非唯一索引等值查询:

  • 当查询的记录「存在」时,由于不是唯一索引,所以肯定存在索引值相同的记录,于是非唯一索引等值查询的过程是一个扫描的过程,直到扫描到第一个不符合条件的二级索引记录就停止扫描,然后在扫描的过程中,对扫描到的二级索引记录加的是 next-key 锁,而对于第一个不符合条件的二级索引记录,该二级索引的 next-key 锁会退化成间隙锁。同时,在符合查询条件的记录的主键索引上加记录锁

  • 当查询的记录「不存在」时,扫描到第一条不符合条件的二级索引记录,该二级索引的 next-key 锁会退化成间隙锁。因为不存在满足查询条件的记录,所以不会对主键索引加锁

非唯一索引和主键索引的范围查询的加锁规则不同之处在于:

  • 唯一索引在满足一些条件的时候,索引的 next-key lock 退化为间隙锁或者记录锁。

  • 非唯一索引范围查询,索引的 next-key lock 不会退化为间隙锁和记录锁。

6.4 死锁:

6.3.1 死锁解决:

死锁的四个必要条件:互斥、占有且等待、不可强占用、循环等待。只要系统发生死锁,这些条件必然成立,但是只要破坏任意一个条件就死锁就不会成立。

  • 设置事务等待锁的超时时间。当一个事务的等待时间超过该值后,就对这个事务进行回滚,于是锁就释放了,另一个事务就可以继续执行了。在 InnoDB 中,参数 innodb_lock_wait_timeout 是用来设置超时时间的,默认值时 50 秒。

    当发生超时后,就出现下面这个提示:

图片

  • 开启主动死锁检测。主动死锁检测在发现死锁后,主动回滚死锁链条中的某一个事务,让其他事务得以继续执行。将参数 innodb_deadlock_detect 设置为 on,表示开启这个逻辑,默认就开启。

    当检测到死锁后,就会出现下面这个提示:

图片

6.3.2 死锁预防:

我们可以回归业务的角度来预防死锁,对订单做幂等性校验的目的是为了保证不会出现重复的订单,那我们可以直接将 order_no 字段设置为唯一索引列,利用它的唯一性来保证订单表不会出现重复的订单,不过有一点不好的地方就是在我们插入一个已经存在的订单记录时就会抛出异常。

7.日志:

7.1 undo log:

我们在执行执行一条“增删改”语句的时候,虽然没有输入 begin 开启事务和 commit 提交事务,但是 MySQL 会隐式开启事务来执行“增删改”语句的,执行完就自动提交事务的,这样就保证了执行完“增删改”语句后,我们可以及时在数据库表看到“增删改”的结果了。

那么,考虑一个问题。一个事务在执行过程中,在还没有提交事务之前,如果 MySQL 发生了崩溃,要怎么回滚到事务之前的数据呢?

如果我们每次在事务执行过程中,都记录下回滚时需要的信息到一个日志里,那么在事务执行中途发生了 MySQL 崩溃后,就不用担心无法回滚到事务之前的数据,我们可以通过这个日志回滚到事务之前的数据。

实现这一机制就是 undo log(回滚日志),它保证了事务的ACID特性中的原子性(Atomicity)

undo log 是一种用于撤销回退的日志。在事务没提交之前,MySQL 会先记录更新前的数据到 undo log 日志文件里面,当事务回滚时,可以利用 undo log 来进行回滚。

每当 InnoDB 引擎对一条记录进行操作(修改、删除、新增)时,要把回滚时需要的信息都记录到 undo log 里,比如:

  • 插入一条记录时,要把这条记录的主键值记下来,这样之后回滚时只需要把这个主键值对应的记录删掉就好了;

  • 删除一条记录时,要把这条记录中的内容都记下来,这样之后回滚时再把由这些内容组成的记录插入到表中就好了;

  • 更新一条记录时,要把被更新的列的旧值记下来,这样之后回滚时再把这些列更新为旧值就好了。

在发生回滚时,就读取 undo log 里的数据,然后做原先相反操作。

一条记录的每一次更新操作产生的 undo log 格式都有一个 roll_pointer 指针和一个 trx_id 事务id:

  • 通过 trx_id 可以知道该记录是被哪个事务修改的;

  • 通过 roll_pointer 指针可以将这些 undo log 串成一个链表,这个链表就被称为版本链;

undo log 两大作用:

  • 实现事务回滚,保障事务的原子性。事务处理过程中,如果出现了错误或者用户执 行了 ROLLBACK 语句,MySQL 可以利用 undo log 中的历史数据将数据恢复到事务开始之前的状态。

  • 实现 MVCC(多版本并发控制)关键因素之一。MVCC 是通过 ReadView + undo log 实现的。undo log 为每条记录保存多份历史数据,MySQL 在执行快照读(普通 select 语句)的时候,会根据事务的 Read View 里的信息,顺着 undo log 的版本链找到满足其可见性的记录。

7.2 Buffer Pool:

MySQL 的数据都是存在磁盘中的,那么我们要更新一条记录的时候,得先要从磁盘读取该记录,然后在内存中修改这条记录。那修改完这条记录是选择直接写回到磁盘,还是选择缓存起来呢?

当然是缓存起来好,这样下次有查询语句命中了这条记录,直接读取缓存中的记录,就不需要从磁盘获取数据了。

为此,Innodb 存储引擎设计了一个缓冲池(Buffer Pool),来提高数据库的读写性能。

image-20231128171548684

有了 Buffer Poo 后:

  • 当读取数据时,如果数据存在于 Buffer Pool 中,客户端就会直接读取 Buffer Pool 中的数据,否则再去磁盘中读取。

  • 当修改数据时,如果数据存在于 Buffer Pool 中,那直接修改 Buffer Pool 中数据所在的页,然后将其页设置为脏页(该页的内存数据和磁盘上的数据已经不一致),为了减少磁盘I/O,不会立即将脏页写入磁盘,后续由后台线程选择一个合适的时机将脏页写入到磁盘。

image-20231128171614224

7.3 redo log:

Buffer Pool 是提高了读写效率没错,但是问题来了,Buffer Pool 是基于内存的,而内存总是不可靠,万一断电重启,还没来得及落盘的脏页数据就会丢失。

为了防止断电导致数据丢失的问题,当有一条记录需要更新的时候,InnoDB 引擎就会先更新内存(同时标记为脏页),然后将本次对这个页的修改以 redo log 的形式记录下来,这个时候更新就算完成了

后续,InnoDB 引擎会在适当的时候,由后台线程将缓存在 Buffer Pool 的脏页刷新到磁盘里,这就是 WAL (Write-Ahead Logging)技术

WAL 技术指的是, MySQL 的写操作并不是立刻写到磁盘上,而是先写日志,然后在合适的时间再写到磁盘上

image-20231128171707674

redo log 是物理日志,记录了某个数据页做了什么修改,比如对 XXX 表空间中的 YYY 数据页 ZZZ 偏移量的地方做了AAA 更新,每当执行一个事务就会产生这样的一条或者多条物理日志。

在事务提交时,只要先将 redo log 持久化到磁盘即可,可以不需要等到将缓存在 Buffer Pool 里的脏页数据持久化到磁盘。

当系统崩溃时,虽然脏页数据没有持久化,但是 redo log 已经持久化,接着 MySQL 重启后,可以根据 redo log 的内容,将所有数据恢复到最新的状态。

7.3.1 undo log 与 redo log的区别:

这两种日志是属于 InnoDB 存储引擎的日志,它们的区别在于:

  • redo log 记录了此次事务「完成后」的数据状态,记录的是更新之后的值;

  • undo log 记录了此次事务「开始前」的数据状态,记录的是更新之前的值;

事务提交之前发生了崩溃,重启后会通过 undo log 回滚事务,事务提交之后发生了崩溃,重启后会通过 redo log 恢复事务.

image-20231128171836733

redo log 保证了事务四大特性中的持久性

7.4 binlog:

前面介绍的 undo log 和 redo log 这两个日志都是 Innodb 存储引擎生成的。

MySQL 在完成一条更新操作后,Server 层还会生成一条 binlog,等之后事务提交的时候,会将该事物执行过程中产生的所有 binlog 统一写 入 binlog 文件。

binlog 文件是记录了所有数据库表结构变更和表数据修改的日志,不会记录查询类的操作,比如 SELECT 和 SHOW 操作。

7.4.1 与redo log的区别:

这两个日志有四个区别。

1、适用对象不同:

  • binlog 是 MySQL 的 Server 层实现的日志,所有存储引擎都可以使用;

  • redo log 是 Innodb 存储引擎实现的日志;

2、文件格式不同:

  • binlog 有 3 种格式类型,分别是 STATEMENT(默认格式)、ROW、 MIXED,区别如下:

    • STATEMENT:每一条修改数据的 SQL 都会被记录到 binlog 中(相当于记录了逻辑操作,所以针对这种格式, binlog 可以称为逻辑日志),主从复制中 slave 端再根据 SQL 语句重现。但 STATEMENT 有动态函数的问题,比如你用了 uuid 或者 now 这些函数,你在主库上执行的结果并不是你在从库执行的结果,这种随时在变的函数会导致复制的数据不一致;

    • ROW:记录行数据最终被修改成什么样了(这种格式的日志,就不能称为逻辑日志了),不会出现 STATEMENT 下动态函数的问题。但 ROW 的缺点是每行数据的变化结果都会被记录,比如执行批量 update 语句,更新多少行数据就会产生多少条记录,使 binlog 文件过大,而在 STATEMENT 格式下只会记录一个 update 语句而已;

    • MIXED:包含了 STATEMENT 和 ROW 模式,它会根据不同的情况自动使用 ROW 模式和 STATEMENT 模式;

  • redo log 是物理日志,记录的是在某个数据页做了什么修改,比如对 XXX 表空间中的 YYY 数据页 ZZZ 偏移量的地方做了AAA 更新;

3、写入方式不同:

  • binlog 是追加写,写满一个文件,就创建一个新的文件继续写,不会覆盖以前的日志,保存的是全量的日志。

  • redo log 是循环写,日志空间大小是固定,全部写满就从头开始,保存未被刷入磁盘的脏页日志。

4、用途不同:

  • binlog 用于备份恢复、主从复制;

  • redo log 用于掉电等故障恢复。

果不小心整个数据库的数据被删除了,能使用 redo log 文件恢复数据吗?

不可以使用 redo log 文件恢复,只能使用 binlog 文件恢复。

因为 redo log 文件是循环写,是会边写边擦除日志的,只记录未被刷入磁盘的数据的物理日志,已经刷入磁盘的数据都会从 redo log 文件里擦除。

binlog 文件保存的是全量的日志,也就是保存了所有数据变更的情况,理论上只要记录在 binlog 上的数据,都可以恢复,所以如果不小心整个数据库的数据被删除了,得用 binlog 文件恢复数据。

7.4.2 用于主从复制:

MySQL 的主从复制依赖于 binlog ,也就是记录 MySQL 上的所有变化并以二进制形式保存在磁盘上。复制的过程就是将 binlog 中的数据从主库传输到从库上。

这个过程一般是异步的,也就是主库上执行事务操作的线程不会等待复制 binlog 的线程同步完成。

MySQL 集群的主从复制过程梳理成 3 个阶段:

  • 写入 Binlog:主库写 binlog 日志,提交事务,并更新本地存储数据。

  • 同步 Binlog:把 binlog 复制到所有从库上,每个从库把 binlog 写到暂存日志中。

  • 回放 Binlog:回放 binlog,并更新存储引擎中的数据。

7.5 update语句执行过程:

具体更新一条记录 UPDATE t_user SET name = 'xiaolin' WHERE id = 1; 的流程如下:

  1. 执行器负责具体执行,会调用存储引擎的接口,通过主键索引树搜索获取 id = 1 这一行记录:

    • 如果 id=1 这一行所在的数据页本来就在 buffer pool 中,就直接返回给执行器更新;

    • 如果记录不在 buffer pool,将数据页从磁盘读入到 buffer pool,返回记录给执行器。

  2. 执行器得到聚簇索引记录后,会看一下更新前的记录和更新后的记录是否一样:

    • 如果一样的话就不进行后续更新流程;

    • 如果不一样的话就把更新前的记录和更新后的记录都当作参数传给 InnoDB 层,让 InnoDB 真正的执行更新记录的操作;

  3. 开启事务, InnoDB 层更新记录前,首先要记录相应的 undo log,因为这是更新操作,需要把被更新的列的旧值记下来,也就是要生成一条 undo log,undo log 会写入 Buffer Pool 中的 Undo 页面,不过在内存修改该 Undo 页面后,需要记录对应的 redo log。

  4. InnoDB 层开始更新记录,会先更新内存(同时标记为脏页),然后将记录写到 redo log 里面,这个时候更新就算完成了。为了减少磁盘I/O,不会立即将脏页写入磁盘,后续由后台线程选择一个合适的时机将脏页写入到磁盘。这就是 WAL 技术,MySQL 的写操作并不是立刻写到磁盘上,而是先写 redo 日志,然后在合适的时间再将修改的行数据写到磁盘上。

  5. 至此,一条记录更新完了。

  6. 在一条更新语句执行完成后,然后开始记录该语句对应的 binlog,此时记录的 binlog 会被保存到 binlog cache,并没有刷新到硬盘上的 binlog 文件,在事务提交时才会统一将该事务运行过程中的所有 binlog 刷新到硬盘。

  7. 事务提交,剩下的就是「两阶段提交」的事情了,接下来就讲这个。

7.6 两阶段提交:

事务提交后,redo log 和 binlog 都要持久化到磁盘,但是这两个是独立的逻辑,可能出现半成功的状态,这样就造成两份日志之间的逻辑不一致。

举个例子,假设 id = 1 这行数据的字段 name 的值原本是 'jay',然后执行 UPDATE t_user SET name = 'xiaolin' WHERE id = 1; 如果在持久化 redo log 和 binlog 两个日志的过程中,出现了半成功状态,那么就有两种情况:

  • 如果在将 redo log 刷入到磁盘之后, MySQL 突然宕机了,而 binlog 还没有来得及写入。MySQL 重启后,通过 redo log 能将 Buffer Pool 中 id = 1 这行数据的 name 字段恢复到新值 xiaolin,但是 binlog 里面没有记录这条更新语句,在主从架构中,binlog 会被复制到从库,由于 binlog 丢失了这条更新语句,从库的这一行 name 字段是旧值 jay,与主库的值不一致性;

  • 如果在将 binlog 刷入到磁盘之后, MySQL 突然宕机了,而 redo log 还没有来得及写入。由于 redo log 还没写,崩溃恢复以后这个事务无效,所以 id = 1 这行数据的 name 字段还是旧值 jay,而 binlog 里面记录了这条更新语句,在主从架构中,binlog 会被复制到从库,从库执行了这条更新语句,那么这一行 name 字段是新值 xiaolin,与主库的值不一致性;

MySQL 为了避免出现两份日志之间的逻辑不一致的问题,使用了「两阶段提交」来解决,两阶段提交其实是分布式事务一致性协议,它可以保证多个逻辑操作要不全部成功,要不全部失败,不会出现半成功的状态。

两阶段提交把单个事务的提交拆分成了 2 个阶段,分别是「准备(Prepare)阶段」和「提交(Commit)阶段」,每个阶段都由协调者(Coordinator)和参与者(Participant)共同完成。注意,不要把提交(Commit)阶段和 commit 语句混淆了,commit 语句执行的时候,会包含提交(Commit)阶段。

  • 准备阶段:裁判(协调者)会依次询问两位拳击手(参与者)是否准备好了,然后拳击手听到后做出应答,如果觉得自己准备好了,就会跟裁判说准备好了;如果没有自己还没有准备好(比如拳套还没有带好),就会跟裁判说还没准备好。

  • 提交阶段:如果两位拳击手(参与者)都回答准备好了,裁判(协调者)宣布比赛正式开始,两位拳击手就可以直接开打;如果任何一位拳击手(参与者)回答没有准备好,裁判(协调者)会宣布比赛暂停,对应事务中的回滚操作。

在 MySQL 的 InnoDB 存储引擎中,开启 binlog 的情况下,MySQL 会同时维护 binlog 日志与 InnoDB 的 redo log,为了保证这两个日志的一致性,MySQL 使用了内部 XA 事务(是的,也有外部 XA 事务,跟本文不太相关,我就不介绍了),内部 XA 事务由 binlog 作为协调者,存储引擎是参与者。

当客户端执行 commit 语句或者在自动提交的情况下,MySQL 内部开启一个 XA 事务,分两阶段来完成 XA 事务的提交,如下图:

image-20231128172344579

就是将 redo log 的写入拆成了两个步骤:prepare 和 commit,中间再穿插写入binlog,具体如下:

  • prepare 阶段:将 XID(内部 XA 事务的 ID) 写入到 redo log,同时将 redo log 对应的事务状态设置为 prepare,然后将 redo log 持久化到磁盘(innodb_flush_log_at_trx_commit = 1 的作用);

  • commit 阶段:把 XID 写入到 binlog,然后将 binlog 持久化到磁盘(sync_binlog = 1 的作用),接着调用引擎的提交事务接口,将 redo log 状态设置为 commit,此时该状态并不需要持久化到磁盘,只需要 write 到文件系统的 page cache 中就够了,因为只要 binlog 写磁盘成功,就算 redo log 的状态还是 prepare 也没有关系,一样会被认为事务已经执行成功;

两阶段提交虽然保证了两个日志文件的数据一致性,但是性能很差,主要有两个方面的影响:

  • 磁盘 I/O 次数高:对于“双1”配置,每个事务提交都会进行两次 fsync(刷盘),一次是 redo log 刷盘,另一次是 binlog 刷盘。

  • 锁竞争激烈:两阶段提交虽然能够保证「单事务」两个日志的内容一致,但在「多事务」的情况下,却不能保证两者的提交顺序一致,因此,在两阶段提交的流程基础上,还需要加一个锁来保证提交的原子性,从而保证多事务的情况下,两个日志的提交顺序一致。